QUESTIONNAIRE Mathematics Test 7. Population 3a OUESTION 1 The expression |x - 1| = 1 implies that A. x is between 0 and 2 D. x is 0 B. x is either 0 or 2 C. x is less than 2 E. x is 2 QUESTION 2 6 4 When (1 + p) is expanded, the coefficient of p is A. 6 B. 10 C. 15 D. 20 E. 30 QUESTION 3 What is the converse of the statement, "If two angles are vertically opposite, then they are equal" ? A. If two angles are vertically opposite, then they are not equal. B. If two angles are equal, hen they are vertically opposite. C. If $\hat{A} \times \hat{A} = \hat{A} \times \hat{A}$ and $\hat{A} \times \hat{A} = \hat{A} \times \hat{A}$. D. If two angles are not vertically opposite, then they are not equal. E. If two angles are not equal, then they arc not vertically opposite. QUESTION 4 Suppose you have proved the two theorems: I. If p then q. II. If s then not q. Which of the following theorems is implied by theorems I and II ? A. If p then s. D. If s then not p. B. If not p then not q. E. If not s then q. C. If p or q then s. QUESTION 5 A train travelled a certain distance at a constant speed. Had the speed

been 8 m.p.h. greater, the trip would have taken one hour less. Had the speed been 12 m.p.h. Iess the trip would have taken two hours more. How many miles did the train go?

QUESTION 6

A wholesale merchant bought a television set at a certain price and then sold it to a retail merchant at an increase of P per cent. of this price. The retail merchant sold the set to a consumer for P per cent. more than he paid for it. If the customer paid 65 per cent. more than the price originally paid by the wholesale merchant, then P satisfies the equation:

A. $1 + \frac{2P}{---} = 1.65$ B. $(1 + \frac{P}{---}) = 1.65$ D. $1 + P\hat{y} = 1.65$ D. $1 + P\hat{y} = 1.65$ D. $1 + P\hat{y} = 1.65$ E. 1 + 2P = 1.65

QUESTION 7 If a relation R is such that xRy and yRz implies xRz for each x, y, and z of a given set, the relation R is said to be transitive on that et. Which of the following relations are transitive?

<pre>I. "is father of" II. "is contemporary of" III. "is admirer of" IV. "is multiple of" V. "is perpendicular to"</pre>	
A. II, IV and V	D. II and IV
B. I and II C. Il, III and IV	E. V only

QUESTION 8 In the figure shown to the right, which vector is a graphical [Picture] representation of the complex number 4 - 2i?

QUESTION 9 Solve 0 < xý - 3x + 3 < 7 QUESTION 10 A relation R from a set S to a set T is a function if and only if given an xîS there exists at most one yîT such that xRy. [Picture] Which of the following relations are functions ? x divides y I. II. x has y for mother III. x is parallel to y IV. x has y for double x has y as majorant (i.e., x < y) v. VI xý = y A. I, II and IIIB. II, IV and VC. II, IV and VI D. IV, V and VI E. I, IV and V QUESTION 11 What is the equation whose roots are the squares of the roots of $x\dot{y} - 5x + 3 = 0$? A. $x\dot{y} - 19x + 9 = 0$ D. $x\dot{y} + 19x - 9 = 0$ B. $x\dot{y} + 19x + 9 = 0$ E. $x\dot{y} - 9x + 19 = 0$ C. $x\dot{y} - 20x + 9 = 0$ QUESTION 12-13 / 2 Questions 12 and 13. Six operations are defined as follows: 1 2 3 The operation A = (), for example, means that the numbers $2 \quad 3 \quad 1$ in the upper row are transformed into the digits in the lower row, so that $1 \rightarrow 2$ (1 becomes 2), $2 \rightarrow 3$ (2 becomes 3), and $3 \rightarrow 1$ (3 becomes 1). A.B shows that operation B is to be performed after operation A; that is, according to A, $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 1$, and then, according to B, 2 -> 1, 3 -> 2, 1 -> 3. Therefore, A.B will be 1 -> 2 -> 1, 2 -> 3 -> 2, and $3 \rightarrow 1 \rightarrow 3$. This produces the same outcome as 123 F = (); let us write this A.B = F.1 2 3 In like manner, A.C is 1 -> 2 -> 3, 2 -> 3 -> 2, 3 -> 1 -> 1, and is the same as D; that is to say, A.C = D.

12. Which one operation is equal to C.D ?

13. What operation must be performed after operation B so that the combined operations are to be the same as operation F?

QUESTION 14 If \boldsymbol{x} and \boldsymbol{y} belong to the set of real numbers and sets P, Q and R are defined as follows, $\begin{array}{l} \mathbb{P} \ = \ \left\{ \left(x \, , \, \, y \right) \ \middle| \ x \dot{y} \ + \ y \dot{y} \ = \ 4 \right\} \\ \mathbb{Q} \ = \ \left\{ \left(x \, , \, \, y \right) \ \middle| \ x \ - \ y \ = \ 2 \right\} \end{array}$ $R = \{ (x, y) \mid (xy + yy - 4) (x - y - 2) = 0 \},\$ [Note: the character n denotes the character for an intersection of sets] Γ : the character u denotes the character for a union of sets 1 Which of the following is true? D. $R = \{ \}$ (the empty set) A. R = P n QB. R = P u QC. $R = \{(2, 0) (0, 2) (-2, 0) (0, -2)\}$ E. $R = \{(2, 0) (0, -2)\}$ QUESTION 15 | 4 2 1 | The value of | 0 0 1 | i | 1 1 0 | is A. -2 B. 0 C. 2 D. 7 E. 9 QUESTION 16 Each root of $x\dot{y} - 2x + 5 = 0$ differs from the cube of the other by a

positive constant c. What is the value of c ?

QUESTION 17

4 2 Two of the roots of the equation x - 27x - 14x + 120 = 0 are 2 and 5. Find the two other roots of the equation.